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Abstract 

Effects of circulation on the evolution of a hairpin-like vortex 
tubes and the associated response of near-wall flows in the shear 
of laminar boundary-layer flows are investigated using a model 
proposed by Hon and Walker (Hon, T.L. & Walker, J.D.A, 
Computers & Fluids, 20(3), pp. 343–358, 1991). Direct 
numerical simulations with freestream Mach number of 0.5 are 
conducted. Numerous secondary hairpin vortices, much more 
than previously reported, which are regularly aligned in the 
streamwise direction are allowed to be newly generated 
according to the shear-layer instability of the legs of an initial 
hairpin vortex. After the generation of the secondary hairpin 
vortices over the hairpin legs, small-scale near-wall turbulence is 
produced when the circulation is sufficiently large. The largest 
fluctuations in streamwise velocity appear before the small-scale 
disturbances appear both between and around the hairpin legs. 
Thus, boundary-layer transition is induced rapidly starting from 
the hairpin-like vortex tube. 
 

Introduction  

The hairpin vortex is considered to be the basic building block 
commonly observed in the dynamics of transitional and turbulent 
flows near a wall [1]. Since the work of Theodorsen [2], there 
have been many studies on hairpin/horseshoe vortices. Several 
publications provide overviews of the formation of the hairpin 
vortex [3-6]. A typical symmetric hairpin vortex consists of two 
legs, neck and head; connected legs directed away from the wall 
by the head constitute a warped structure of the vortex tube. 
Based on the literature, a hairpin vortex has many intriguing 
aspects in understanding the generation of turbulence.  

Moin et al [7] computationally studied the deformation of a 
hairpin-shaped vortex filament under self-induction and in the 
presence of shear using the Biot-Savart law, and showed a 
mechanism for generating ring vortices in turbulent shear flows. 
Acarlar and Smith [8] experimentally visualized the dynamics of 
hairpin vortices in the downstream wake of a hemisphere. Hon 
and Walker [9] developed a stable numerical method based on 
Lagrangian vortex method that can accurately compute the 
trajectory of a three-dimensional vortex having a small core 
radius. By the method, they showed that a two-dimensional 
vortex containing small three-dimensional disturbances becomes 
complex with subsidiary hairpin vortices forming outboard of the 
original hairpin vortex. Singer et al [10] studied the formation 
and growth of a hairpin vortex in a flat-plate boundary layer and 
its later development into a young turbulent spot. Initial hairpin 
vortex was triggered by fluid injection through a slit in the wall. 
They reported the formation of multiple hairpin vortex heads 
between stretched legs, new vortices beneath the streamwise-
elongated vortex legs, and a traveling region of highly disturbed 
flow with an arrowhead shape similar to that of a turbulent spot. 
Zhou et al [11,12] studied, by direct numerical simulation (DNS), 
the evolution of a symmetric pair of quasistreamwise vortical 

structures extracted from the two-point correlation tensor of 
turbulent channel flow data by a linear stochastic estimation 
procedure. They reported that sufficiently strong hairpin vortices 
generate a hierarchy of secondary hairpin vortices, and the 
mechanism of their creation closely resembles the formation of 
the primary hairpin vortex. They addressed in detail the 
mechanisms for the autogeneration of hairpin vortices, and 
formulated criteria for the generation of new hairpins, in terms of 
the strength and location of the initial hairpin. Liu et al [13] 
conducted a compressible DNS for non-linear stages of laminar-
turbulent transition. They discussed the coherent vortex structure 
appearing in the late stages of transition and the mechanism of 
formation of single vortex ring, multiple vortex rings, and small 
length scale. At the inflow, they assumed two-dimensional waves 
and a pair of oblique waves in addition to the laminar boundary 
layer profile to reproduce transition of K-regime. Duguet et al 
[14] investigated the region of phase space separating transitional 
from relaminarizing trajectories regarding the Blasius boundary 
layer, and a quasicyclic mechanism for the generation of hairpin 
vortex offspring. Cohen et al [15] proposed a model consisting of 
minimal flow elements that can produce packets of hairpins. 
They showed that the three components of the model are simple 
shear, a counter-rotating vortex pairs having finite streamwise 
vorticity magnitude and a two-dimensional wavy (in the 
streamwise direction) spanwise vortex sheet. Eitel-Amor et al 
[16] studied the characteristics of hairpin vortices in turbulent 
boundary layers by parallel and spatially developing simulations. 
They found that secondary hairpins are only created shortly after 
initialization, with all rotational structures decaying for later 
times. They also reported that the regeneration process is rather 
short-lived and may not sustain once a turbulent background is 
developed. Sabatino et al [17] studied experimentally hairpin 
vortex formation in a laminar boundary layer by fluid injection 
through a narrow slot. They discussed hairpin vortex head, legs 
and secondary hairpin vortex focusing on its circulation strength.  

Although there are many studies on hairpin vortices, effects 
produced by varying the physical parameters associated with the 
hairpin vortices on its stability and near-wall dynamics have not 
necessarily been investigated separately and systematically. In 
this regard, the hairpin model proposed by Hon and Walker [9] is 
particularly intriguing because the degrees of freedom of the 
system such as vortex curve, circulation, size, angle-to-wall, core 
radius of a vortex cross-section, and background velocity field 
appears to enable a systematic investigation directly. However, 
the model has not been studied in detail within the framework of 
DNS. Recently, the present author [18] conducted a DNS on the 
dynamics of single hairpin vortex and a straight vortex tube using 
the model. However, the process of transition is not discussed in 
details. Therefore, in this study, the process is discussed in details 
using the results of the DNS. The focus is on the effects of 
circulation.  
 
Computational Method 



Freestream Mach number is 0.5 and streamwise Reynolds 
number at the inlet is 5.34×105. At the initial time t=0, single 
hairpin vortex or a straight vortex tube of finite length is 
embedded in a laminar boundary layer. The vortex axes of the 
legs of the hairpin vortex and the straight vortex tube are inclined 
to the x(streamwise) axis and its angle is 4°. Computation is 
impulsively started from the initial condition. Three kinds of 
circulation magnitudes are considered in this study. The 
circulations of the vortex Γ/(2π) non-dimensionalized by 
freestream velocity and the displacement thickness δin

* at the 
inlet, denoted as Γ*, is chosen as 6.24, 12.4 and 24.9. Velocity 
fields induced by the vortex tubes are generated by the algorithm 
of Hon and Walker [9] explained by the eqns. (1-3). The 
algorithm is a modification of the Moore’s algorithm [19] which 
is reported to exhibit strong numerical instability for small value 
of a core radius a. At an arbitrary location in space X0, velocity 
field u due to a vortex is basically described by the Biot-Savart 
Law. Contour C is a curve defining a vortex tube, and Γ is 
circulation about the vortex core, and uext is a background 
velocity field.  
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When X0 is close to the curve C, the above equation is switched 
to the following equation to prevent singularity. The parameter s 
is a Lagrangian coordinate which ranges from -∞ to ∞ along the 
vortex. The integrand of R(s,s0) is shown in [9].  
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The initial vortex configuration used in the case of the single 
hairpin vortex is of the form 

kjjiX ssAs ++−+= )2exp()sincos()( βαα  (4) 

Here, kji ,, are unit vectors in corresponding to the streamwise 
(x), normal (y) and spanwise (z) directions, respectively. Eq. (4) 
represents a two-dimensional vortex located a unit distance from 
the wall with a three-dimensional distortion which is symmetrical 
about s=0. In addition, A represents the amplitude of the 
distortion and α is the angle that the plane of the distortion makes 
with the wall. β is a (large) number determining the effective 
spanwise width of the initial distortion. Here, A is 24δin

*. (xc, yc, 
zc) is the root position of the vortex tube. xc is 30δin

* downstream 
of the inlet and yc=0.4δin

*. φ is an angle of inclination to the wall 
and φ=4°.  

The governing equations are the unsteady three-dimensional 
fully compressible Navier-Stokes equations in general 
coordinates (ξ, η, ζ). The perfect gas law closes the system of 
equations. Viscosity is evaluated by Sutherland’s formula and a 
constant Prandtl number of Pr=0.72 is assumed. The equations 
are solved using the finite-difference method. Spatial derivatives 

that appear in the metrics, convective and viscous terms are 
evaluated using the sixth-order tridiagonal compact scheme [20]. 
Near boundaries, the fourth-order one-sided and classical Padé 
schemes are used on the boundaries and at one point internal to 
them. Time-dependent solutions to the governing equations are 
obtained using the third-order explicit Runge-Kutta scheme. The 
time increment is constant and set to 

∞
−×=∆ ut in /104.42 *4δ in all flow fields. Here, δin

* is the 
inflow displacement thickness which will be mentioned later, and 
u∞ is the free-stream velocity. For the present computation, the 
Courant-Friedrichs-Lewy (CFL) number, which is defined by the 
maximum sums of a contravariant velocity and the speed of 
sound scaled by the metrics as is around 0.4. In addition to the 
above-mentioned spatial discretization and time integration, a 
tenth-order implicit filtering [21] is introduced to suppress 
numerical instabilities that arise from central differencing in the 
compact scheme. The filter parameters that appear in the left-
hand side are set to 0.33 for i=2 and imax-1 and 0.492 for 2 < 
i<imax-1. Near the boundaries, implicit filters of orders 
p=(4,4,6,8,10) for i=(2,…,6) and i=(imax-1,…,imax-5), are used. 
The present numerical method has been well validated for the 
prediction of transitional and turbulent subsonic flows [22,23].  
 
Results and Discussion 

Figure 1 shows time sequence of the vortex deformation and the 
dynamic response of the boundary layer for Γ*=6.24-24.9. When 
Γ* =6.24, i.e., the circulation is small, small number of hairpin 
vortices are generated. When Γ* =12.4, i.e., the circulation is 
medium, aligned hairpin vortices over the hairpin legs and 
turbulent regions consisting of hairpin vortices are generated. 
Especially at t*=174, numerous secondary hairpin vortices much 
more than previously reported, which are regularly aligned in the 
streamwise direction, are allowed to be newly generated 
according to the shear-layer instability of the legs of an initial 
hairpin vortex [18]. Here, t* is time non-dimensionalized by δin

* 
and the speed of sound c∞. When Γ* =24.9, i.e., the circulation is 
large, quasi-streamwise vortices appear near the upstream root of 
the legs. In addition to the central region sandwiched between the 
two legs, hairpin vortices are generated near the root of the two 
legs. Near the tail of the turbulent spot, the region of hairpin 
vortices are divided into two regions corresponding to the hairpin 
legs at t*=87-174. 

Figure 2 shows time variation of the boundary layer profiles 
both at 112δin

* downstream of the inlet and at the spanwise center 
of the computational domain. When Γ* =6.24, the profiles swell 
inside the boundary layers as the passage of the hairpin vortices. 
However, after that, the profiles come back to the original 
laminar boundary layer profiles. When Γ* =24.9, the original 
boundary layer profiles including freestream regions are greatly 
modified due to the passage of the turbulent region. After t*=147, 
streamwise velocity near the wall becomes large showing that the 
near-wall flows become turbulent.  

Figure 3 shows time variation of the spanwise distribution of 
the streamwise velocity both at 112δin

* downstream of the inlet 
and at the height of 10% of the local boundary layer thickness δ99. 
When Γ* =6.24, a low-speed region between the hairpin legs and 
two high-speed regions outside the low-speed regions are formed. 
When Γ* =12.4, the growth of short disturbances not only in the 
interior region between the hairpin legs but also in the leg regions 
is confirmed. Before short disturbances appear both between and 
around the hairpin legs, i.e., around t*=287, the streamwise 
fluctuations become largest around z=8.31δin

* and 13.6δin
*.  

 



   
t*=87 t*=174 t*=261 

(a) Γ*=6.24 

   
t*=87 t*=174 t*=261 

(b) Γ*=12.4 

   
t*=87 t*=174 t*=261 

(c) Γ*=24.9 
Figure 1 Time sequence of the deformation of the single hairpin 
vortex and the dynamic response of the boundary layer. The color 
shows a streamwise velocity divided by a sound speed, i.e, Mach 
number. [18] 
 

  
(a) Γ*=6.24 (b) Γ*=24.9 

Figure 2 Time variation of the boundary layer profiles both at 
112δin

* downstream of the inlet and at the spanwise center of the 
computational domain 
 

  
(c) Γ*=6.24 (d) Γ*=12.4 

Figure 3 Time variation of the spanwise distribution of the 
streamwise velocity both at 112δin

* downstream of the inlet and 
y=0.1δ99.  
 
Conclusions 

Effects of the circulation on the evolution of vortex tubes and 
associated response of near-wall flows in the shear of laminar 
boundary-layer flows were investigated by DNS using the hairpin 
vortex model proposed by Hon and Walker. Dynamics of single 
hairpin vortex was investigated. Numerous secondary hairpin 
vortices much more than previously reported, which are regularly 
aligned in the streamwise direction and bridging over the legs, 
are allowed to be newly generated according to the shear-layer 
instability of the legs of an initial hairpin vortex. After the 

generation of the secondary hairpin vortices over the hairpin legs, 
small-scale near-wall turbulence is produced when the circulation 
is sufficiently large. The largest fluctuations in streamwise 
velocity appear before the small-scale disturbances appear both 
between and around the hairpin legs. Thus, boundary-layer 
transition is induced rapidly starting from the hairpin-like vortex 
tube.  
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